

2010 Marking Scheme

Grade	Mark Required		% acadidates achieving anada
Awarded	(/ ₈₀)	%	% candidates achieving grade
A	58+	72%+	41.0%
В	49+	61%+	21.2%
С	41+	51%+	17.7%
D	37+	46%+	6.4%
No award	<37	×46%	13.8%

Section:	Multiple Choice		Extended Answer	
Average Mark:	20.9	/30	32.3	/50

2010 Int2 Chemistry Marking Scheme				
MC Qu	Answer	% Pupils Correct	Reasoning	
1	A	89	$\square A$ Ice Melting is a physical change as no new chemical has been formed $\square B$ Iron rusting produces a new chemical: $4Fe + 3O_2 \rightarrow 2Fe_2O_3$ $\square C$ Methane burns to form carbon dioxide and water: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $\square D$ Acid neutralises to form water: $H^* + OH^- \rightarrow H_2O$	
2	D	75	Rate = $\frac{\Delta quantity}{\Delta time} = \frac{5-0}{20-0} = \frac{5}{20} = 0.25 \text{ cm}^3 \text{ s}^{-1}$	
3	С	57	 ☑ A C-H: electronegativity difference = 2.5-2.2 = 0.3 ∴ least polar bond ☑ B N-H: electronegativity difference = 3.0-2.2 = 0.8 ☑ C O-H: electronegativity difference = 3.5-2.2 = 1.3 ∴ most polar bond ☑ D C-O: electronegativity difference = 4.5-2.5 = 1.0 	
4	D	70	 A Non-polar covalent bonding: Pairs of electrons shared equally between atoms B Polar covalent bonding: Pairs of electrons shared unequally between atoms C Ionic Bonding: attraction of oppositely charged ions for each other D Metallic Bonding: attraction of positively charged ions for delocalised electrons 	
5	С	73	 A Carbon (diamond) is a covalent network with large tetrahedral structure B Helium is a Noble gas and comes in single atoms (monatomic) C Nitrogen has a C=C triple bond within the N₂ molecule D Sulphur has an S₈ ring structure 	
6	D	63	IonF^-Cl^-Br^-SizeSmallestMediumLargestSpeed of IonFastestMediumSlowest	
7	В	79	Write down Valency below each ion's symbol Mg SO3 ²⁻ 2 2 2 Mg SO3 ²⁻ Mg SO3 ² - Mg SO3 ² -	
8	В	89	 Write down reactants and product formulae Al(s) + Br₂(l) → AlBr₃(s) 1 aluminium on each side ∴ no action 2xBr before arrow and 3xBr after arrow ∴ make both sides up to 6xBr 1xAl before arrow and 2xAl after arrow ∴ make both sides up to 2xAl 2Al(s) + 3Br₂(l) → 2AlBr₃(s) 2AlBr₃(s) 	
9	С	86	 ☑ A mass = (1×12) + (2×16) = 12+32 = 44amu ☑ B mass = (1×14) + (2×18) = 14+36 = 50amu ☑ C mass = (1×12) + (1×16) + (1×18) = 12+16+18 = 46amu ☑ D mass = (1×14) + (1×16) + (1×18) = 14+16+18 = 48amu 	
10	A	70		
11	A	83	☑A large molecules are more viscous (thicker) than small molecules ☑B small molecules are more flammable than large molecules ☑C small molecules evaporate more readily than large molecules ☑D small molecules have lower boiling point range than large molecules	

12	D	82	\blacksquare A CH ₄ fits into the general formula of C_nH_{2n+2} \therefore CH ₄ is an alkane \blacksquare B C ₂ H ₆ fits into the general formula of C_nH_{2n+2} \therefore C ₂ H ₆ is an alkane \blacksquare C C ₄ H ₁₀ fits into the general formula of C_nH_{2n+2} \therefore C ₄ H ₁₀ is an alkane \blacksquare D C ₆ H ₁₂ fits into the general formula of C_nH_{2n} \therefore C ₆ H ₁₂ is an alkene or cycloalkane		
13	В	37	 A Condensation: Small molecules join together with water removed at join B Dehydration: Water molecule removed and C=C double bond formed in its place C Hydration: Water molecule added across a C=C double bond D Hydrolysis: Large molecule splits into smaller ones with water added at the break 		
14	D	59	 A Kevlar is a very strong polymer used in bullet-proof vests B Perspex is a transparent polymer used as a replacement for glass C Poly(ethene) is a widely used polymer D Poly(ethenol) is a soluble polymer 		
15	В	87	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
16	С	72	$\begin{array}{c} O \\ H \\ -C - OH \\ carboxylic acid \end{array} + H - N \\ \begin{array}{c} H \\ -N \\ amine \end{array} - \begin{array}{c} condensation \\ \hline water removed \\ at join \end{array} + \begin{array}{c} O \\ H \\ -C - N \\ amide link \end{array}$		
17	A	47	In a reversible reaction at equilibrium: Rate of forward reaction = Rate of reverse reaction Concentration of reactants and products are constant but not <i>equal</i>		
18	A	74	 ☑A Ammonia dissolves in water to form ammonium hydroxide ∴ alkaline pH>7 ☑B Carbon dioxide dissolves in water to form carbonic acid ∴ acidic pH<7 ☑C Sulphur Dioxide dissolves in water to form sulphurous acid ∴ acidic pH<7 ☑D Sodium chloride dissolves in water to form a neutral solution ∴ pH=7 		
19	В	79	 A acidic solutions have a small number of OH⁻ ions in them B acidic solutions have concentration of H⁺ ions > concentration of OH⁻ ions C alkaline solutions have concentration of OH⁻ ions > concentration of H⁺ ions neutral solutions have concentration of H⁺ ions = concentration of OH⁻ ions 		
20	С	63	no. of mol (NH4)2SO4 = volume × concentration = 0.5litres × 1mol l ⁻¹ = 0.5mol gfm (NH4)2SO4 = (2×14)+(8×1)+(1×32)+(4×16) = 28+8+32+64 = 132g mass = no. of mol × gfm = 0.5 × 132 = 66q		
21	С	64	AcidpHConductivityRate of Reaction with MagnesiumHydrochloric acidlowerhigherfasterEthanoic Acidhigherlowerslower		
22	D	58	Base: Compound which neutralises an acid to form watermetal hydroxides (alkalis)metal oxidesmetal carbonates		
23	A	88	 A during neutralisation: pH of acid increases up to pH=7 B during neutralisation: pH of acid increases up to pH=7 C during neutralisation: pH of an alkali decreases down to pH=7 D during neutralisation: pH of an alkali decreases down to pH=7 		
24	A	60	 ☑A copper is not reactive enough to react with dilute hydrochloric acid ☑B zinc + hydrochloric acid → zinc chloride + hydrogen ☑C copper carbonate + hydrochloric acid → copper chloride + water + carbon dioxide ☑D zinc carbonate + hydrochloric acid → zinc chloride + water + carbon dioxide 		

~ =	-		A barium sulphate is insoluble and can be prepared by a precipitation reaction B lead (TT) sulphate is insoluble and can be prepared by a precipitation reaction
25 (С	C 77	☑C calcium chloride is soluble and will not form a precipitate
			D silver chloride is insoluble and can be prepared by a precipitation reaction
			Pb^{2+} + $2NO_3^-$ + $2Na^+$ + $2I^- \rightarrow Pb^{2+}(I^-)_2$ + $2Na^+$ + $2NO_3^-$
			Cancel out any spectator ions which appear on both sides
26	Α	84	$Pb^{2+} + 2NQ_3^- + 2Nq^+ + 2I^- \rightarrow Pb^{2+}(I^-)_2 + 2NQ_3^+ + 2NQ_3^-$
			Re-write equation omitting spectator ions
			Pb^{2+} + $2I^{-} \rightarrow Pb^{2+}(I^{-})_{2}$
			🗷 A iron is below zinc in the electrochemical series 🛛 🔅 iron will not displace zinc
27	D	01	$oxtimes$ B magnesium is above zinc in the electrochemical series \therefore magnesium displaces zinc
۲ ۲	D	71	☑C silver is below zinc in the electrochemical series ∴ silver will not displace zinc
			■D tin is below zinc in the electrochemical series tin will not displace zinc
			$\bigcirc \qquad Ag^+ + e^- \rightarrow \qquad Ag$
	•	A 35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
28	A		$\mathbf{\nabla} \times 2 \qquad \mathbf{Z} \mathbf{A} \mathbf{g}^* + \mathbf{Z} \mathbf{e}^* \rightarrow \qquad \mathbf{Z} \mathbf{A} \mathbf{g}$
			Add 0 + 2 Mg + 2Ag ⁺ + 2e ⁻ \rightarrow Mg ²⁺ + 2e ⁻ + 2Ag
			$Mq + 2Aq^{+} + 2e^{-} \rightarrow Mq^{2+} + 2e^{-} + 2Aq$
			Cancel e ⁻ $Mg + 2Ag^+ \rightarrow Mg^{2+} + 2Ag$
			Method Electrolysis Heat With Carbon Heat Alone
	•	59	Potassium Sodium
29	D		This Way Lithium Calcium Tin Lead Copper Gold Platinum
			Magnesium Aluminium Ceda Magnesium
			Reason most reactive metals medium reactive metals least reactive metals
			\mathbb{L} A Glucose $C_6H_{12}O_6$ is covalent and does not act as a electrolyte
30	C	<i>C</i> 44	IMB Magnesium would protect the nail from rusting by sacrificial protection
	\sim		Le rotassium nitrate is ionic and will act as an electrolyte to complete the circuit
			The number of the second secon

	2010 Int2 Chemistry Marking Scheme				
Long Qu	Answer	Reasoning			
1a	Nucleus	proton Proton			
1b(i)	8	Mass number = no. of protons + no. of neutrons = 3 + 5 = 8			
1b(ii)	number of protons equals number of electrons	Atoms are electrically neutral because the number of positive protons equals the number of negative electrons.			
1b(iii)	Alkali Metals	Group170between 2 & 3NameAlkali MetalsHalogensNoble GasesTransitional metals			
2a	Endothermic	Exothermic Reaction which gives off energy/heat to the surroundings Endothermic Reaction which takes in energy/heat from the surroundings			
2b	(s) (l) (aq)	$NH_4NO_3(s) + H_2O(l) \longrightarrow NH_4NO_3(aq)$			
2c	Solvent	SoluteSubstance which is dissolvedSolventLiquid which does the dissolvingSolutionMixture of solute dissolved in the solvent			
2d	8	temperature change = $\frac{\text{energy change}}{\text{mass of water x 4.2}} = \frac{6.72}{0.2 \times 4.2} = 8^{\circ}C$			
3a	covalent network	Covalent Carbon is a non-metal which forms covalent bonds Network Diamond is a covalent network due to its very high melting point			
3b(i)		Methane CH4 is shown left. Other diagrams to learn include: Hydrogen chloride HCl HQ Cl HQ HQ HQ HQ HQ HQ HQ HQ HQ HQ			
3b(ii)	H H H	Tetrahedral methane is shown left. Other diagrams to learn include: HCl H2O NH3 H — Cl H — H H linear angular H			
4a (i)	25	Problem Solving: Reading information from a graph			
4 a(ii)	1.5	25% of 6g = <u>25</u> 100 ×6 =1.5g			

		gfm Ag = 108g			
		no of mol - <u>mass</u> - <u>1.08</u> - 0.01 mol			
		gfm 108			
		$4Aq + 2H_2S + O_2 \longrightarrow 2Aq_2S + 2H_2O$			
4b	1.24	4mol 2mol			
		2mol 1mol			
		0.01mol 0.005mol			
		qfm Aq ₂ S = (2x108)+(1x32) = 216+32 = 248			
		m ass = n o. of mol × gfm = 0.005 × 248 = 1.24g			
		The catalyst must be at a high temperature before it will work efficiently.			
5.	Heat catalyst then	The Bunsen burner initially heats only the catalyst and when it is hot the			
DC	heat paraffin	Bunsen burner is then moved under the paraffin with the heating shared			
	-	between the paraffin and the catalyst to keep both warm.			
		When the test tube is heated, the air inside expands and bubbles leave			
통노	To provent quel back	the delivery tube. When heating is stopped, the air inside contracts back			
20	To prevent suck-back	to its original size but gas cannot re-enter the delivery tube so liquid is			
		sucked up instead. Cold liquid can cause hot glass to crack.			
5 acr	aluminium oxida	Aluminium oxide is the catalyst in a cracking reaction.			
SC(I)	aluminium oxide	Silicate can also be used as the catalyst in this reaction.			
_	lowers temperature	Catalyst are used to speed up reactions and are not used up in the			
5c(ii)	cracking takes place	reaction. Catalyst can be used to lower the temperature a reaction takes			
	ci ucking tukes place	place at, often for safety reasons.			
		$H + Rr_2$ $H Br Br$			
5d	Addition	$H-C-C = C-H \xrightarrow{fast} H-C-C-H$			
00					
		ній ній			
6.0	Nissense also inco				
σα	Diagram showing:				
		н н н н н			
		heptan- 7 carbons in chain			
6b	heptan-4-one	-one C=O functional group			
		-4- Functional group on 4 th carbon			
		Ketone C3H6O C4H8O C5H10O C6H12O C7H14O			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
6c	149-153				
•••		Difference 24°C 22°C 25°C Average = 24°C			
		Estimate 151°C			
		alucase enzymes alcohol + carbon diavida			
7a (i)	Fermentation	(no air) alconol + carbon dioxide			
		$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$			
7.0	Enzymed	Enzymes are biological catalysts which catalyse the chemical			
7 U (II)	LIIZYIIIKS	reactions in living organisms at body temperature			
76	Enzymes denature at	Enzymes will change shape permanently and denature when temperatures			
		are too high. Once denatured, enzymes no longer catalyse reactions.			

7c	Distillation	Distillation separates chemicals with different boiling points. Ethanol boils at 78°C and water boils at 100°C. If the temperature is set between 78°C and 100°C, the ethanol will boil but the water will remain in the container.
8a	Esters	H = O H H H H $H = O H H H H$ $H = -O - C - C - C - H$ $H = H H H$ $H = -butanoate$
8b(i)	hydrolysis	$H O H H H_{methyl butanoate}$ $H - C - O - C - C - C - H$ $H - H H H H + H_2O$
8b(ii)	НННО Н-С-С-С-С ННННОН	$H_{methanol} + O_{H} H_{H} H_{methanol} + O_{H} H_{H} H_{H$
9a	Photosynthesis	carbon dioxide + water <u>chlorophyll</u> glucose + oxygen 6CO ₂ + 6H ₂ O C ₆ H ₁₂ O ₆ + 6O ₂
9b	Starch: Jodine turns blue/black or Benedict's Blue → Red	$\begin{array}{ c c c c c c }\hline Carbohydrate & Glucose & Fructose & Maltose & Sucrose & Starch \\\hline Formula & C_6H_{12}O_6 & C_6H_{12}O_6 & C_{12}H_{22}O_{11} & C_{12}H_{22}O_{11} & (C_6H_{10}O_5)_n \\\hline Reaction with & blue & blue & blue \\\hline Aeaction with & \downarrow & \downarrow & no change \\\hline Reaction with & no change & no change & no change & no change \\\hline Iodine Solution & no change & no change & no change & no change \\\hline Iodine Solution & no change & no change & no change & no change \\\hline Carbohydrate & Sucrose & Starch & Sucrose & Starch & (C_6H_{10}O_5)_n \\\hline C_12H_{22}O_{11} & (C_6H_{10}O_5)_n & \\\hline C_12H_{22}O_{11} & (C_6H_{10}O_5)_n$
9c	-OH group circled	The hydroxyl functional group has the formula -O-H
9d	2,8	ParticleMagnesium atomMg2+ ionElectron Arrangement2,8,22,8
10a	pH value between 0-6	Acidic Neutral Alkaline pH<7 pH=7 pH>7
10b(i)	As temperature increases the solubility decreases	Problem Solving: Interpreting a line graph and making a conclusion
10b(ii)	1.9	Problem Solving: extend line and estimation of value at 10°C
11a	Acid rain	 Acid rain is formed from sulphur dioxide or nitrogen dioxide gas dissolving in rain water. sulphur dioxide is formed from burning sulphur in coal nitrogen dioxide is formed by sparks in air
11b(i)	calcium, carbon and oxygen	EndingMeaningExample-ide2 elements in compoundCopper sulphide = copper + sulphur-ate2 elements in compound + oxygenCopper sulphate = copper + sulphur + oxygen-ite2 elements in compound + oxygenSodium sulphite = sodium + sulphur + oxygen
11b(ii)	water	Calcium oxide + Water Calcium hydroxide CaO + H₂O Ca(OH)₂

120	Stops oxygen or	Corrosion requires both oxygen and water to be present to take place. If				
ILU	water getting to iron	either water or oxygen is removed corrosion will not take place.				
12b(i)	Galvanising	Galvanising is the coating of iron in zinc. Zinc is higher up the electrochemical series than iron and will protect it by sacrificial protection where zinc gives electrons to the iron.				
12b(ii)	One from:	Zinc gives electrons to the ironZinc is more reactiveZinc gives sacrificial protectionZinc is higher up electrochemical series				
13a	pH probe show neutral or pH=7	The acid must be fully neutralised by alkali before salt can be collected. The pH probe can be used to indicated the neutralisation point				
13b	0.08mol l ⁻¹	no. of mol acid = volume x concentration = 0.020 x 0.1 = 0.002mol $2NaOH + H_2SO_4 \longrightarrow NaSO_4 + 2H_2O$ 2mol 1mol 0.004mol 0.002mol concentration = $\frac{no. of mol}{volume}$ = $\frac{0.004 mol}{0.05 litres}$ = 0.08 mol l ⁻¹				
14a(i)	Copper Iron electrode electrode 100cm ³ 0.1 mol l ⁻¹ hydrochloric acid	In a fair test, only one variable will change in the experiment: Variable Changing (in question) Variable staying the same Solution Type Metals used as electrode Sodium chloride → hydrochloric acid Concentration of solution Volume of solution Temperature Distance electrode kept apart Mass of electrodes				
14a(ii)	Repeat Experiment and calculate average	Repeating an experiment and averaging the results improves the accuracy and reliability of an experiment.				
14b(i)	▲ From right to left	$\begin{array}{ccc} \mbox{Electrons are generated on iron electrode (right):} & \mbox{Fe} & \rightarrow & \mbox{Fe}^{2+} + 2e^- \\ \mbox{Electrons are accepted by iodine at carbon electrode (left):} & \mbox{I}_2 + 2e^- & \rightarrow & \mbox{2I}^- \end{array}$				
14b(ii)	Good conductor of electricity	Carbon (graphite) is the only non-metal which conducts electricity				